Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

j=(m)/(c)*78
Which of the following equations correctly expresses 
c in terms of 
j and 
m ?
Choose 1 answer:
(A) 
c=(m)/(j)*78
(B) 
c=(m)/(78*j)
(C) 
c=(j)/(m)*78
(D) 
c=(j)/(78*m)

j=mc78 j = \frac{m}{c} \cdot 78 \newlineWhich of the following equations correctly expresses c c in terms of j j and m m ?\newlineChoose 11 answer:\newline(A) c=mj78 c = \frac{m}{j} \cdot 78 \newline(B) c=m78j c = \frac{m}{78 \cdot j} \newline(C) c=jm78 c = \frac{j}{m} \cdot 78 \newline(D) c=j78m c = \frac{j}{78 \cdot m}

Full solution

Q. j=mc78 j = \frac{m}{c} \cdot 78 \newlineWhich of the following equations correctly expresses c c in terms of j j and m m ?\newlineChoose 11 answer:\newline(A) c=mj78 c = \frac{m}{j} \cdot 78 \newline(B) c=m78j c = \frac{m}{78 \cdot j} \newline(C) c=jm78 c = \frac{j}{m} \cdot 78 \newline(D) c=j78m c = \frac{j}{78 \cdot m}
  1. Given Equation: We start with the given equation: j=(mc)×78j = \left(\frac{m}{c}\right) \times 78. To solve for cc, we need to isolate cc on one side of the equation.
  2. Divide by 7878: First, we divide both sides of the equation by 7878 to get rid of the multiplication by 7878 on the right side. This gives us:\newlinej78=mc\frac{j}{78} = \frac{m}{c}.
  3. Take Reciprocal: Next, we need to get cc by itself. To do this, we can take the reciprocal of both sides of the equation. This gives us:\newlinecm=78j\frac{c}{m} = \frac{78}{j}.
  4. Multiply by mm: Finally, we multiply both sides of the equation by mm to solve for cc. This gives us:\newlinec=(m)×(78j)c = (m) \times (\frac{78}{j}).
  5. Compare with Options: Now we compare our result with the given options. Our result, c=(m)×(78j)c = (m) \times (\frac{78}{j}), matches option (B) c=m78×jc = \frac{m}{78\times j}.

More problems from Find derivatives of using multiple formulae