Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

j=(m)/(c)*78
Which of the following equations correctly expresses 
c in terms of 
j and 
m ?
Choose 1 answer:
(A) 
c=(m)/(j)*78
(B) 
c=(m)/(78*j)
(C) 
c=(j)/(m)*78
(D) 
c=(j)/(78*m)

j=mc78j=\frac{m}{c}\cdot 78\newlineWhich of the following equations correctly expresses \newlinecc in terms of jj and mm?\newlineChoose 11 answer:\newline(A) c=mj78c=\frac{m}{j}\cdot 78\newline(B) c=m78jc=\frac{m}{78\cdot j}\newline(C) c=jm78c=\frac{j}{m}\cdot 78\newline(D) c=j78mc=\frac{j}{78\cdot m}

Full solution

Q. j=mc78j=\frac{m}{c}\cdot 78\newlineWhich of the following equations correctly expresses \newlinecc in terms of jj and mm?\newlineChoose 11 answer:\newline(A) c=mj78c=\frac{m}{j}\cdot 78\newline(B) c=m78jc=\frac{m}{78\cdot j}\newline(C) c=jm78c=\frac{j}{m}\cdot 78\newline(D) c=j78mc=\frac{j}{78\cdot m}
  1. Divide by 7878: To isolate cc, we need to manipulate the equation j=(mc)×78j = \left(\frac{m}{c}\right) \times 78 to solve for cc. We start by dividing both sides of the equation by 7878 to get rid of the multiplication by 7878 on the right side.\newlinej/78=(mc)×(78/78)j / 78 = \left(\frac{m}{c}\right) \times (78/78)
  2. Simplify right side: Simplifying the right side of the equation, we get: j78=mc\frac{j}{78} = \frac{m}{c}
  3. Multiply by c: Now, we need to get cc by itself. To do this, we can multiply both sides of the equation by cc and then divide by j78\frac{j}{78} to solve for cc.c×(j78)=mc \times \left(\frac{j}{78}\right) = m
  4. Divide by (j/78)(j/78): Finally, we divide both sides of the equation by (j/78)(j / 78) to isolate cc:c=m(j/78)c = \frac{m}{(j / 78)}
  5. Simplify equation: We can simplify the right side of the equation by multiplying by the reciprocal of (j/78)(j / 78), which is 78/j78 / j:\newlinec=m×(78/j)c = m \times (78 / j)
  6. Final equation: This simplifies to: c=m×78jc = \frac{m \times 78}{j}
  7. Final equation: This simplifies to:\newlinec=m×78jc = \frac{m \times 78}{j}We can now see that the correct equation that expresses cc in terms of jj and mm is:\newlinec=m×78jc = \frac{m \times 78}{j}\newlineThis matches option (B) c=m78×jc = \frac{m}{78 \times j}.

More problems from Find derivatives of using multiple formulae