Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline9,6,7,7,9,49, 6, 7, 7, 9, 4\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline9,6,7,7,9,49, 6, 7, 7, 9, 4\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Data Set: Data set: 9,6,7,7,9,49, 6, 7, 7, 9, 4\newlineμ=7\mu = 7\newlineCalculate the sum of the squared differences from the mean.\newlineΣ(xiμ)2=(97)2+(67)2+(77)2+(77)2+(97)2+(47)2\Sigma(x_i - \mu)^2 = (9 - 7)^2 + (6 - 7)^2 + (7 - 7)^2 + (7 - 7)^2 + (9 - 7)^2 + (4 - 7)^2\newline=(2)2+(1)2+(0)2+(0)2+(2)2+(3)2= (2)^2 + (-1)^2 + (0)^2 + (0)^2 + (2)^2 + (-3)^2\newline=4+1+0+0+4+9= 4 + 1 + 0 + 0 + 4 + 9\newline=18= 18
  2. Calculate Sum: We have:\newlineΣ(xiμ)2=18\Sigma(x_i - \mu)^2= 18\newlineN=6N= 6\newlineNow, calculate the variance using the formula and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=18/6\sigma^2 = 18/6\newlineσ2=3\sigma^2 = 3\newlineSince the result is a whole number, there is no need to round to the nearest tenth.

More problems from Variance and standard deviation