Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance? \newline88 77 66 44 33 \newlineIf the answer is a decimal, round it to the nearest tenth. \newlinevariance (σ2\sigma^2):__

Full solution

Q. In the data set below, what is the variance? \newline88 77 66 44 33 \newlineIf the answer is a decimal, round it to the nearest tenth. \newlinevariance (σ2\sigma^2):__
  1. Calculate squared differences: Now, we will calculate the squared differences from the mean for each data point.\newline(85.6)2+(75.6)2+(65.6)2+(45.6)2+(35.6)2(8 - 5.6)^2 + (7 - 5.6)^2 + (6 - 5.6)^2 + (4 - 5.6)^2 + (3 - 5.6)^2\newline=(2.4)2+(1.4)2+(0.4)2+(1.6)2+(2.6)2= (2.4)^2 + (1.4)^2 + (0.4)^2 + (-1.6)^2 + (-2.6)^2\newline=5.76+1.96+0.16+2.56+6.76= 5.76 + 1.96 + 0.16 + 2.56 + 6.76\newline=17.2= 17.2
  2. Sum squared differences: Finally, we will divide the sum of squared differences by the number of data points to find the variance.\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=17.25\sigma^2 = \frac{17.2}{5}\newlineσ2=3.44\sigma^2 = 3.44\newlineSince we need to round to the nearest tenth, the variance σ23.4\sigma^2 \approx 3.4.

More problems from Variance and standard deviation