Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline9,6,3,1,3,8,59, 6, 3, 1, 3, 8, 5\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline9,6,3,1,3,8,59, 6, 3, 1, 3, 8, 5\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (9+6+3+1+3+8+5)/7(9 + 6 + 3 + 1 + 3 + 8 + 5)/7\newlineμ=35/7\mu = 35/7\newlineμ=5\mu = 5
  2. Calculate Sum of Squared Differences: Data set: 9,6,3,1,3,8,59, 6, 3, 1, 3, 8, 5 \newlineμ=5\mu = 5\newlineCalculate the sum of the squared differences from the mean.\newline(95)2+(65)2+(35)2+(15)2+(35)2+(85)2+(55)2(9 - 5)^2 + (6 - 5)^2 + (3 - 5)^2 + (1 - 5)^2 + (3 - 5)^2 + (8 - 5)^2 + (5 - 5)^2\newline=(4)2+(1)2+(2)2+(4)2+(2)2+(3)2+(0)2= (4)^2 + (1)^2 + (-2)^2 + (-4)^2 + (-2)^2 + (3)^2 + (0)^2\newline=16+1+4+16+4+9+0= 16 + 1 + 4 + 16 + 4 + 9 + 0\newline=50= 50
  3. Calculate Variance: We have:\newlineΣ(xiμ)2=50\Sigma(x_i - \mu)^2= 50\newlineN=7N= 7\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=50/7\sigma^2 = 50/7\newlineσ27.1\sigma^2 \approx 7.1 (rounded to the nearest tenth)

More problems from Variance and standard deviation