Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline9,5,5,2,2,5,79, 5, 5, 2, 2, 5, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline9,5,5,2,2,5,79, 5, 5, 2, 2, 5, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (9+5+5+2+2+5+7)/7(9 + 5 + 5 + 2 + 2 + 5 + 7)/7\newlineμ=35/7\mu = 35/7\newlineμ=5\mu = 5
  2. Calculate Squared Differences: Data set: 9,5,5,2,2,5,79, 5, 5, 2, 2, 5, 7
    μ=5\mu = 5
    Calculate the sum of the squared differences from the mean.
    (95)2+(55)2+(55)2+(25)2+(25)2+(55)2+(75)2(9 - 5)^2 + (5 - 5)^2 + (5 - 5)^2 + (2 - 5)^2 + (2 - 5)^2 + (5 - 5)^2 + (7 - 5)^2
    =(4)2+(0)2+(0)2+(3)2+(3)2+(0)2+(2)2= (4)^2 + (0)^2 + (0)^2 + (-3)^2 + (-3)^2 + (0)^2 + (2)^2
    =16+0+0+9+9+0+4= 16 + 0 + 0 + 9 + 9 + 0 + 4
    =38= 38
  3. Calculate Variance: We know:\newlineΣ(xiμ)2=38\Sigma(x_i - \mu)^2= 38\newlineN=7N= 7\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=38/7\sigma^2 = 38/7\newlineσ25.4\sigma^2 \approx 5.4 (rounded to the nearest tenth)

More problems from Variance and standard deviation