Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline9,4,3,3,3,7,69, 4, 3, 3, 3, 7, 6\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline9,4,3,3,3,7,69, 4, 3, 3, 3, 7, 6\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlinequestion_prompt: What is the variance of the given data set?\newlineData set: 9,4,3,3,3,7,69, 4, 3, 3, 3, 7, 6\newlineMean μ=(9+4+3+3+3+7+6)/7\mu = (9 + 4 + 3 + 3 + 3 + 7 + 6)/7\newlineμ=35/7\mu = 35/7\newlineμ=5\mu = 5
  2. Squared Differences: Calculate the squared differences from the mean for each data point.\newlineData set: 9,4,3,3,3,7,69, 4, 3, 3, 3, 7, 6\newlineMean μ=5\mu = 5\newlineSquared differences: (95)2,(45)2,(35)2,(35)2,(35)2,(75)2,(65)2(9 - 5)^2, (4 - 5)^2, (3 - 5)^2, (3 - 5)^2, (3 - 5)^2, (7 - 5)^2, (6 - 5)^2\newline=42,(1)2,(2)2,(2)2,(2)2,22,12= 4^2, (-1)^2, (-2)^2, (-2)^2, (-2)^2, 2^2, 1^2\newline=16,1,4,4,4,4,1= 16, 1, 4, 4, 4, 4, 1
  3. Sum Squared Differences: Sum the squared differences to find Σ(xiμ)2\Sigma(x_i - \mu)^2.\newlineSum: 16+1+4+4+4+4+116 + 1 + 4 + 4 + 4 + 4 + 1\newline= 3434
  4. Calculate Variance: Calculate the variance using the formula σ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}.\newlineNumber of data points N=7N = 7\newlineVariance σ2=347\sigma^2 = \frac{34}{7}\newlineσ24.857\sigma^2 \approx 4.857\newlineRound to the nearest tenth: σ24.9\sigma^2 \approx 4.9

More problems from Variance and standard deviation