Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline9,3,3,4,59, 3, 3, 4, 5\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline9,3,3,4,59, 3, 3, 4, 5\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Data Set: Data set: 9,3,3,4,59, 3, 3, 4, 5\newlineMean μ=4.8\mu = 4.8\newlineCalculate the sum of the squared differences from the mean, Σ(xiμ)2\Sigma(x_i - \mu)^2.\newline(94.8)2+(34.8)2+(34.8)2+(44.8)2+(54.8)2(9 - 4.8)^2 + (3 - 4.8)^2 + (3 - 4.8)^2 + (4 - 4.8)^2 + (5 - 4.8)^2\newline=(4.2)2+(1.8)2+(1.8)2+(0.8)2+(0.2)2= (4.2)^2 + (-1.8)^2 + (-1.8)^2 + (-0.8)^2 + (0.2)^2\newline=17.64+3.24+3.24+0.64+0.04= 17.64 + 3.24 + 3.24 + 0.64 + 0.04\newline$= \(24\).\(8\)
  2. Calculate Sum: We have the sum of squared differences \(\Sigma(x_i - \mu)^2 = 24.8\) and the number of data points \(N = 5\). Now, calculate the variance \(\sigma^2\). \(\sigma^2 = (\Sigma(x_i - \mu)^2)/N\) \(\sigma^2 = 24.8/5\) \(\sigma^2 = 4.96\) Round the variance to the nearest tenth. \(\sigma^2 \approx 5.0\)

More problems from Variance and standard deviation