Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline9,2,6,3,39, 2, 6, 3, 3\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____

Full solution

Q. In the data set below, what is the variance?\newline9,2,6,3,39, 2, 6, 3, 3\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____
  1. Data Set: Data set: 9,2,6,3,39, 2, 6, 3, 3 \newlineμ=4.6\mu = 4.6\newlineCalculate the sum of the squared differences from the mean, Σ(xiμ)2\Sigma(x_i - \mu)^2.\newline(94.6)2+(24.6)2+(64.6)2+(34.6)2+(34.6)2(9 - 4.6)^2 + (2 - 4.6)^2 + (6 - 4.6)^2 + (3 - 4.6)^2 + (3 - 4.6)^2\newline=(4.4)2+(2.6)2+(1.4)2+(1.6)2+(1.6)2= (4.4)^2 + (-2.6)^2 + (1.4)^2 + (-1.6)^2 + (-1.6)^2\newline=19.36+6.76+1.96+2.56+2.56= 19.36 + 6.76 + 1.96 + 2.56 + 2.56\newline=33.2= 33.2
  2. Calculate Sum of Squared Differences: We have:\newlineΣ(xiμ)2=33.2\Sigma(x_i - \mu)^2= 33.2\newlineN=5N= 5\newlineNow, calculate the variance using the formula σ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N.\newlineσ2=33.2/5\sigma^2 = 33.2/5\newlineσ2=6.64\sigma^2 = 6.64\newlineRound the variance to the nearest tenth.\newlineσ26.6\sigma^2 \approx 6.6

More problems from Variance and standard deviation