Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline9,1,8,5,29, 1, 8, 5, 2\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____

Full solution

Q. In the data set below, what is the variance?\newline9,1,8,5,29, 1, 8, 5, 2\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (9+1+8+5+2)/5(9 + 1 + 8 + 5 + 2)/5\newlineμ=25/5\mu = 25/5\newlineμ=5\mu = 5
  2. Sum of Squared Differences: Data set: 9,1,8,5,29, 1, 8, 5, 2 \newlineμ=5\mu = 5\newlineCalculate the sum of the squared differences from the mean.\newline(95)2+(15)2+(85)2+(55)2+(25)2(9 - 5)^2 + (1 - 5)^2 + (8 - 5)^2 + (5 - 5)^2 + (2 - 5)^2\newline=(4)2+(4)2+(3)2+(0)2+(3)2= (4)^2 + (-4)^2 + (3)^2 + (0)^2 + (-3)^2\newline=16+16+9+0+9= 16 + 16 + 9 + 0 + 9\newline=50= 50
  3. Variance Calculation: We have the sum of the squared differences:\newlineΣ(xiμ)2=50\Sigma(x_i - \mu)^2= 50\newlineThere are N=5N= 5 data points.\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=50/5\sigma^2 = 50/5\newlineσ2=10\sigma^2 = 10\newlineSince the result is a whole number, there is no need to round to the nearest tenth.

More problems from Variance and standard deviation