Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline8,7,8,2,18, 7, 8, 2, 1\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline8,7,8,2,18, 7, 8, 2, 1\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (8+7+8+2+1)/5(8 + 7 + 8 + 2 + 1)/5\newlineμ=26/5\mu = 26/5\newlineμ=5.2\mu = 5.2
  2. Calculate Sum of Squared Deviations: Data set: 8,7,8,2,18, 7, 8, 2, 1\newlineμ=5.2\mu = 5.2\newlineCalculate the sum of the squared deviations from the mean.\newline(85.2)2+(75.2)2+(85.2)2+(25.2)2+(15.2)2(8 - 5.2)^2 + (7 - 5.2)^2 + (8 - 5.2)^2 + (2 - 5.2)^2 + (1 - 5.2)^2\newline=(2.8)2+(1.8)2+(2.8)2+(3.2)2+(4.2)2= (2.8)^2 + (1.8)^2 + (2.8)^2 + (-3.2)^2 + (-4.2)^2\newline=7.84+3.24+7.84+10.24+17.64= 7.84 + 3.24 + 7.84 + 10.24 + 17.64\newline=46.8= 46.8
  3. Calculate Variance: We know:\newlineΣ(xiμ)2=46.8\Sigma(x_i - \mu)^2= 46.8\newlineN=5N= 5\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=46.8/5\sigma^2 = 46.8/5\newlineσ2=9.36\sigma^2 = 9.36\newlineσ29.4\sigma^2 \approx 9.4

More problems from Variance and standard deviation