Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline8,7,4,9,6,88, 7, 4, 9, 6, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline8,7,4,9,6,88, 7, 4, 9, 6, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Squared Differences: Now, calculate the sum of the squared differences from the mean for each data point. \newlineΣ(xiμ)2=(87)2+(77)2+(47)2+(97)2+(67)2+(87)2\Sigma(x_i - \mu)^2 = (8 - 7)^2 + (7 - 7)^2 + (4 - 7)^2 + (9 - 7)^2 + (6 - 7)^2 + (8 - 7)^2\newline=(1)2+(0)2+(3)2+(2)2+(1)2+(1)2= (1)^2 + (0)^2 + (-3)^2 + (2)^2 + (-1)^2 + (1)^2\newline=1+0+9+4+1+1= 1 + 0 + 9 + 4 + 1 + 1\newline=16= 16
  2. Find Variance: Finally, divide the sum of squared differences by the number of data points to find the variance.\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=166\sigma^2 = \frac{16}{6}\newlineσ22.6667\sigma^2 \approx 2.6667\newlineRound the variance to the nearest tenth.\newlineσ22.7\sigma^2 \approx 2.7

More problems from Variance and standard deviation