Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline8,4,5,9,7,98, 4, 5, 9, 7, 9\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline8,4,5,9,7,98, 4, 5, 9, 7, 9\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Sum Squared Differences: Now, calculate the sum of the squared differences from the mean for each data point. \newlineΣ(xiμ)2=(87)2+(47)2+(57)2+(97)2+(77)2+(97)2\Sigma(x_i - \mu)^2 = (8 - 7)^2 + (4 - 7)^2 + (5 - 7)^2 + (9 - 7)^2 + (7 - 7)^2 + (9 - 7)^2\newline=(1)2+(3)2+(2)2+(2)2+(0)2+(2)2= (1)^2 + (-3)^2 + (-2)^2 + (2)^2 + (0)^2 + (2)^2\newline=1+9+4+4+0+4= 1 + 9 + 4 + 4 + 0 + 4\newline=22= 22
  2. Find Variance: Finally, divide the sum of squared differences by the number of data points to find the variance.\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=226\sigma^2 = \frac{22}{6}\newlineσ23.6667\sigma^2 \approx 3.6667\newlineRound the variance to the nearest tenth.\newlineσ23.7\sigma^2 \approx 3.7

More problems from Variance and standard deviation