Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline7,7,5,8,4,3,87, 7, 5, 8, 4, 3, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____

Full solution

Q. In the data set below, what is the variance?\newline7,7,5,8,4,3,87, 7, 5, 8, 4, 3, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (7+7+5+8+4+3+8)/7(7 + 7 + 5 + 8 + 4 + 3 + 8)/7\newlineμ=42/7\mu = 42/7\newlineμ=6\mu = 6
  2. Calculate Sum of Squared Differences: Data set: 7,7,5,8,4,3,87, 7, 5, 8, 4, 3, 8
    μ=6\mu = 6
    Calculate the sum of the squared differences from the mean.
    (76)2+(76)2+(56)2+(86)2+(46)2+(36)2+(86)2(7 - 6)^2 + (7 - 6)^2 + (5 - 6)^2 + (8 - 6)^2 + (4 - 6)^2 + (3 - 6)^2 + (8 - 6)^2
    =(1)2+(1)2+(1)2+(2)2+(2)2+(3)2+(2)2= (1)^2 + (1)^2 + (-1)^2 + (2)^2 + (-2)^2 + (-3)^2 + (2)^2
    =1+1+1+4+4+9+4= 1 + 1 + 1 + 4 + 4 + 9 + 4
    =24= 24
  3. Calculate Variance: We know:\newlineΣ(xiμ)2=24\Sigma(x_i - \mu)^2= 24\newlineN=7N= 7\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=24/7\sigma^2 = 24/7\newlineσ23.42857142857\sigma^2 \approx 3.42857142857\newlineσ23.4\sigma^2 \approx 3.4 when rounded to the nearest tenth.

More problems from Variance and standard deviation