Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline7,6,2,8,8,57, 6, 2, 8, 8, 5\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline7,6,2,8,8,57, 6, 2, 8, 8, 5\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Squared Differences: Now that we have the mean, we calculate the squared differences from the mean for each data point.\newline(76)2+(66)2+(26)2+(86)2+(86)2+(56)2(7 - 6)^2 + (6 - 6)^2 + (2 - 6)^2 + (8 - 6)^2 + (8 - 6)^2 + (5 - 6)^2\newline= (1)2+(0)2+(4)2+(2)2+(2)2+(1)2(1)^2 + (0)^2 + (-4)^2 + (2)^2 + (2)^2 + (-1)^2\newline= 1+0+16+4+4+11 + 0 + 16 + 4 + 4 + 1\newline= 2626
  2. Find Variance: Finally, we divide the sum of squared differences by the number of data points to find the variance.\newlineΣ(xiμ)2=26\Sigma(x_i - \mu)^2 = 26\newlineN=6N = 6\newlineVariance σ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=26/6\sigma^2 = 26/6\newlineσ24.333...\sigma^2 \approx 4.333...\newlineRounded to the nearest tenth: σ24.3\sigma^2 \approx 4.3

More problems from Variance and standard deviation