Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline6,6,4,7,3,2,76, 6, 4, 7, 3, 2, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline6,6,4,7,3,2,76, 6, 4, 7, 3, 2, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Sum Squared Differences: Now, let's calculate the sum of the squared differences from the mean.\newlineΣ(ximean)2=(65)2+(65)2+(45)2+(75)2+(35)2+(25)2+(75)2\Sigma(x_i - \text{mean})^2 = (6 - 5)^2 + (6 - 5)^2 + (4 - 5)^2 + (7 - 5)^2 + (3 - 5)^2 + (2 - 5)^2 + (7 - 5)^2\newlineΣ(ximean)2=(1)2+(1)2+(1)2+(2)2+(2)2+(3)2+(2)2\Sigma(x_i - \text{mean})^2 = (1)^2 + (1)^2 + (-1)^2 + (2)^2 + (-2)^2 + (-3)^2 + (2)^2\newlineΣ(ximean)2=1+1+1+4+4+9+4\Sigma(x_i - \text{mean})^2 = 1 + 1 + 1 + 4 + 4 + 9 + 4\newlineΣ(ximean)2=24\Sigma(x_i - \text{mean})^2 = 24
  2. Calculate Variance: Finally, we calculate the variance by dividing the sum of squared differences by the number of data points. \newlineVariance σ2\sigma^2 = Σ(ximean)2N\frac{\Sigma(x_i - \text{mean})^2}{N}\newlineVariance σ2\sigma^2 = 247\frac{24}{7}\newlineVariance σ2\sigma^2 3.4\approx 3.4 (rounded to the nearest tenth)

More problems from Variance and standard deviation