Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline6,6,1,5,36, 6, 1, 5, 3\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline6,6,1,5,36, 6, 1, 5, 3\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate squared differences: Now, calculate the squared differences from the mean for each data point. \newline(64.2)2+(64.2)2+(14.2)2+(54.2)2+(34.2)2(6 - 4.2)^2 + (6 - 4.2)^2 + (1 - 4.2)^2 + (5 - 4.2)^2 + (3 - 4.2)^2\newline= (1.8)2+(1.8)2+(3.2)2+(0.8)2+(1.2)2(1.8)^2 + (1.8)^2 + (-3.2)^2 + (0.8)^2 + (-1.2)^2\newline= 3.24+3.24+10.24+0.64+1.443.24 + 3.24 + 10.24 + 0.64 + 1.44\newline= 18.818.8
  2. Find the variance: Finally, divide the sum of squared differences by the number of data points to find the variance.\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=18.85\sigma^2 = \frac{18.8}{5}\newlineσ2=3.76\sigma^2 = 3.76\newlineRound the variance to the nearest tenth.\newlineσ23.8\sigma^2 \approx 3.8

More problems from Variance and standard deviation