Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline6,4,6,1,96, 4, 6, 1, 9\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline6,4,6,1,96, 4, 6, 1, 9\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (6+4+6+1+9)/5(6 + 4 + 6 + 1 + 9)/5\newlineμ=26/5\mu = 26/5\newlineμ=5.2\mu = 5.2
  2. Calculate Sum of Squared Differences: Data set: 6,4,6,1,96, 4, 6, 1, 9 \newlineμ=5.2\mu = 5.2\newlineCalculate the sum of the squared differences from the mean.\newline(65.2)2+(45.2)2+(65.2)2+(15.2)2+(95.2)2(6 - 5.2)^2 + (4 - 5.2)^2 + (6 - 5.2)^2 + (1 - 5.2)^2 + (9 - 5.2)^2\newline=(0.8)2+(1.2)2+(0.8)2+(4.2)2+(3.8)2= (0.8)^2 + (-1.2)^2 + (0.8)^2 + (-4.2)^2 + (3.8)^2\newline=0.64+1.44+0.64+17.64+14.44= 0.64 + 1.44 + 0.64 + 17.64 + 14.44\newline=34.8= 34.8
  3. Calculate Variance: We know:\newlineΣ(xiμ)2=34.8\Sigma(x_i - \mu)^2= 34.8\newlineN=5N= 5\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=34.85\sigma^2 = \frac{34.8}{5}\newlineσ2=6.96\sigma^2 = 6.96\newlineσ27.0\sigma^2 \approx 7.0

More problems from Variance and standard deviation