Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline6,4,1,9,7,96, 4, 1, 9, 7, 9\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline6,4,1,9,7,96, 4, 1, 9, 7, 9\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Data Set: Data set: 6,4,1,9,7,96, 4, 1, 9, 7, 9 \newlineμ=6\mu = 6\newlineCalculate the sum of the squared differences from the mean.\newline(66)2+(46)2+(16)2+(96)2+(76)2+(96)2(6 - 6)^2 + (4 - 6)^2 + (1 - 6)^2 + (9 - 6)^2 + (7 - 6)^2 + (9 - 6)^2\newline=(0)2+(2)2+(5)2+(3)2+(1)2+(3)2= (0)^2 + (-2)^2 + (-5)^2 + (3)^2 + (1)^2 + (3)^2\newline=0+4+25+9+1+9= 0 + 4 + 25 + 9 + 1 + 9\newline$= \(48\)
  2. Calculate Sum: We have the sum of the squared differences:\(\newline\)\(\Sigma(x_i - \mu)^2= 48\)\(\newline\)The number of data points \(N= 6\)\(\newline\)Calculate the variance and round your answer to the nearest tenth.\(\newline\)\(\sigma^2 = (\Sigma(x_i - \mu)^2)/N\)\(\newline\)\(\sigma^2 = 48/6\)\(\newline\)\(\sigma^2 = 8\)\(\newline\)Since the result is not a decimal, there is no need to round.

More problems from Variance and standard deviation