Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline6,3,6,8,5,86, 3, 6, 8, 5, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline6,3,6,8,5,86, 3, 6, 8, 5, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (6+3+6+8+5+8)/6(6 + 3 + 6 + 8 + 5 + 8)/6\newlineμ=36/6\mu = 36/6\newlineμ=6\mu = 6
  2. Calculate Sum of Squared Differences: Data set: 6,3,6,8,5,86, 3, 6, 8, 5, 8 \newlineμ=6\mu = 6\newlineCalculate the sum of the squared differences from the mean.\newline(66)2+(36)2+(66)2+(86)2+(56)2+(86)2(6 - 6)^2 + (3 - 6)^2 + (6 - 6)^2 + (8 - 6)^2 + (5 - 6)^2 + (8 - 6)^2\newline=(0)2+(3)2+(0)2+(2)2+(1)2+(2)2= (0)^2 + (-3)^2 + (0)^2 + (2)^2 + (-1)^2 + (2)^2\newline=0+9+0+4+1+4= 0 + 9 + 0 + 4 + 1 + 4\newline=18= 18
  3. Calculate Variance: We have:\newlineΣ(xiμ)2=18\Sigma(x_i - \mu)^2= 18\newlineN=6N= 6\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=18/6\sigma^2 = 18/6\newlineσ2=3\sigma^2 = 3\newlineSince the result is not a decimal, there is no need to round.

More problems from Variance and standard deviation