Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline6,1,4,5,1,2,26, 1, 4, 5, 1, 2, 2\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline6,1,4,5,1,2,26, 1, 4, 5, 1, 2, 2\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Sum Squared Differences: Now, we will calculate the sum of the squared differences from the mean for each data point.\newlineΣ(xiμ)2=(63)2+(13)2+(43)2+(53)2+(13)2+(23)2+(23)2\Sigma(x_i - \mu)^2 = (6 - 3)^2 + (1 - 3)^2 + (4 - 3)^2 + (5 - 3)^2 + (1 - 3)^2 + (2 - 3)^2 + (2 - 3)^2\newline=(3)2+(2)2+(1)2+(2)2+(2)2+(1)2+(1)2= (3)^2 + (-2)^2 + (1)^2 + (2)^2 + (-2)^2 + (-1)^2 + (-1)^2\newline=9+4+1+4+4+1+1= 9 + 4 + 1 + 4 + 4 + 1 + 1\newline=24= 24
  2. Divide by Number of Data Points: Finally, we will divide the sum of squared differences by the number of data points to find the variance.\newlineNumber of data points N=7N = 7\newlineVariance σ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=247\sigma^2 = \frac{24}{7}\newlineσ23.42857142857\sigma^2 \approx 3.42857142857\newlineRounded to the nearest tenth, σ23.4\sigma^2 \approx 3.4

More problems from Variance and standard deviation