Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline5,8,5,7,5,2,35, 8, 5, 7, 5, 2, 3\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline5,8,5,7,5,2,35, 8, 5, 7, 5, 2, 3\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Squared Differences: Now that we have the mean, we calculate the squared differences from the mean for each data point.\newline(55)2+(85)2+(55)2+(75)2+(55)2+(25)2+(35)2(5 - 5)^2 + (8 - 5)^2 + (5 - 5)^2 + (7 - 5)^2 + (5 - 5)^2 + (2 - 5)^2 + (3 - 5)^2\newline=02+32+02+22+02+(3)2+(2)2= 0^2 + 3^2 + 0^2 + 2^2 + 0^2 + (-3)^2 + (-2)^2\newline=0+9+0+4+0+9+4= 0 + 9 + 0 + 4 + 0 + 9 + 4\newline=26= 26
  2. Find Variance: Finally, we divide the sum of squared differences by the number of data points to find the variance.\newlineNumber of data points N=7N = 7\newlineVariance σ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=267\sigma^2 = \frac{26}{7}\newlineσ23.71428571429\sigma^2 \approx 3.71428571429\newlineRounded to the nearest tenth, σ23.7\sigma^2 \approx 3.7

More problems from Variance and standard deviation