Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline4,4,6,7,8,74, 4, 6, 7, 8, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline4,4,6,7,8,74, 4, 6, 7, 8, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Sum Squared Differences: Now, calculate the sum of the squared differences from the mean for each data point. \newlineΣ(xiμ)2=(46)2+(46)2+(66)2+(76)2+(86)2+(76)2\Sigma(x_i - \mu)^2 = (4 - 6)^2 + (4 - 6)^2 + (6 - 6)^2 + (7 - 6)^2 + (8 - 6)^2 + (7 - 6)^2\newline=(2)2+(2)2+(0)2+(1)2+(2)2+(1)2= (-2)^2 + (-2)^2 + (0)^2 + (1)^2 + (2)^2 + (1)^2\newline=4+4+0+1+4+1= 4 + 4 + 0 + 1 + 4 + 1\newline=14= 14
  2. Find Variance: Finally, divide the sum of squared differences by the number of data points to find the variance.\newlineN=6N = 6 (number of data points)\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=146\sigma^2 = \frac{14}{6}\newlineσ22.333...\sigma^2 \approx 2.333...\newlineRound to the nearest tenth.\newlineσ22.3\sigma^2 \approx 2.3

More problems from Variance and standard deviation