Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline4,3,1,7,8,4,84, 3, 1, 7, 8, 4, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline4,3,1,7,8,4,84, 3, 1, 7, 8, 4, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Sum Squared Differences: Now, let's calculate the sum of the squared differences from the mean.\newlineΣ(ximean)2=(45)2+(35)2+(15)2+(75)2+(85)2+(45)2+(85)2\Sigma(x_i - \text{mean})^2 = (4 - 5)^2 + (3 - 5)^2 + (1 - 5)^2 + (7 - 5)^2 + (8 - 5)^2 + (4 - 5)^2 + (8 - 5)^2\newlineΣ(ximean)2=(1)2+(2)2+(4)2+(2)2+(3)2+(1)2+(3)2\Sigma(x_i - \text{mean})^2 = (-1)^2 + (-2)^2 + (-4)^2 + (2)^2 + (3)^2 + (-1)^2 + (3)^2\newlineΣ(ximean)2=1+4+16+4+9+1+9\Sigma(x_i - \text{mean})^2 = 1 + 4 + 16 + 4 + 9 + 1 + 9\newlineΣ(ximean)2=44\Sigma(x_i - \text{mean})^2 = 44
  2. Calculate Variance: Finally, we calculate the variance by dividing the sum of squared differences by the number of data points. \newlineVariance σ2\sigma^2 = Σ(ximean)2N\frac{\Sigma(x_i - \text{mean})^2}{N}\newlineVariance σ2\sigma^2 = 447\frac{44}{7}\newlineVariance σ2\sigma^2 6.3\approx 6.3 (rounded to the nearest tenth)

More problems from Variance and standard deviation