Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline3,9,9,1,6,7,73, 9, 9, 1, 6, 7, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline3,9,9,1,6,7,73, 9, 9, 1, 6, 7, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (3+9+9+1+6+7+7)/7(3 + 9 + 9 + 1 + 6 + 7 + 7)/7\newlineμ=42/7\mu = 42/7\newlineμ=6\mu = 6
  2. Calculate Sum of Squared Differences: Data set: 3,9,9,1,6,7,73, 9, 9, 1, 6, 7, 7
    μ=6\mu = 6
    Calculate the sum of the squared differences from the mean, Σ(xiμ)2\Sigma(x_i - \mu)^2.
    (36)2+(96)2+(96)2+(16)2+(66)2+(76)2+(76)2(3 - 6)^2 + (9 - 6)^2 + (9 - 6)^2 + (1 - 6)^2 + (6 - 6)^2 + (7 - 6)^2 + (7 - 6)^2
    =(3)2+(3)2+(3)2+(5)2+(0)2+(1)2+(1)2= (-3)^2 + (3)^2 + (3)^2 + (-5)^2 + (0)^2 + (1)^2 + (1)^2
    =9+9+9+25+0+1+1= 9 + 9 + 9 + 25 + 0 + 1 + 1
    =54= 54
  3. Calculate Variance: We have:\newlineΣ(xiμ)2=54\Sigma(x_i - \mu)^2= 54\newlineN=7N= 7\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=54/7\sigma^2 = 54/7\newlineσ27.7\sigma^2 \approx 7.7 (rounded to the nearest tenth)

More problems from Variance and standard deviation