Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline3,4,1,3,1,7,23, 4, 1, 3, 1, 7, 2\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline3,4,1,3,1,7,23, 4, 1, 3, 1, 7, 2\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Data Set: Data set: 3,4,1,3,1,7,23, 4, 1, 3, 1, 7, 2\newlineMean μ=3\mu = 3\newlineCalculate the sum of the squared differences from the mean, Σ(xiμ)2\Sigma(x_i - \mu)^2.\newline(33)2+(43)2+(13)2+(33)2+(13)2+(73)2+(23)2(3 - 3)^2 + (4 - 3)^2 + (1 - 3)^2 + (3 - 3)^2 + (1 - 3)^2 + (7 - 3)^2 + (2 - 3)^2\newline=(0)2+(1)2+(2)2+(0)2+(2)2+(4)2+(1)2= (0)^2 + (1)^2 + (-2)^2 + (0)^2 + (-2)^2 + (4)^2 + (-1)^2\newline=0+1+4+0+4+16+1= 0 + 1 + 4 + 0 + 4 + 16 + 1\newline$= \(26\)
  2. Calculate Sum: We have:\(\newline\)\(\Sigma(x_i - \mu)^2= 26\)\(\newline\)Number of data points \(N= 7\)\(\newline\)Calculate the variance \(\sigma^2\) and round your answer to the nearest tenth.\(\newline\)\(\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\)\(\newline\)\(\sigma^2 = \frac{26}{7}\)\(\newline\)\(\sigma^2 \approx 3.71428571\)\(\newline\)Rounded to the nearest tenth: \(\sigma^2 \approx 3.7\)

More problems from Variance and standard deviation