Q. In the data set below, what is the variance?3,4,1,3,1,7,2If the answer is a decimal, round it to the nearest tenth.variance (σ2): _____
Data Set: Data set: 3,4,1,3,1,7,2Mean μ=3Calculate the sum of the squared differences from the mean, Σ(xi−μ)2.(3−3)2+(4−3)2+(1−3)2+(3−3)2+(1−3)2+(7−3)2+(2−3)2=(0)2+(1)2+(−2)2+(0)2+(−2)2+(4)2+(−1)2=0+1+4+0+4+16+1$= \(26\)
Calculate Sum: We have:\(\newline\)\(\Sigma(x_i - \mu)^2= 26\)\(\newline\)Number of data points \(N= 7\)\(\newline\)Calculate the variance \(\sigma^2\) and round your answer to the nearest tenth.\(\newline\)\(\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\)\(\newline\)\(\sigma^2 = \frac{26}{7}\)\(\newline\)\(\sigma^2 \approx 3.71428571\)\(\newline\)Rounded to the nearest tenth: \(\sigma^2 \approx 3.7\)
More problems from Variance and standard deviation