Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline3,1,1,8,1,43, 1, 1, 8, 1, 4\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline3,1,1,8,1,43, 1, 1, 8, 1, 4\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Sum Squared Differences: Now, we will calculate the sum of the squared differences from the mean for each data point.\newlineΣ(xiμ)2=(33)2+(13)2+(13)2+(83)2+(13)2+(43)2\Sigma(x_i - \mu)^2 = (3 - 3)^2 + (1 - 3)^2 + (1 - 3)^2 + (8 - 3)^2 + (1 - 3)^2 + (4 - 3)^2\newline=02+(2)2+(2)2+52+(2)2+12= 0^2 + (-2)^2 + (-2)^2 + 5^2 + (-2)^2 + 1^2\newline=0+4+4+25+4+1= 0 + 4 + 4 + 25 + 4 + 1\newline=38= 38
  2. Find Variance: Finally, we will divide the sum of squared differences by the number of data points to find the variance.\newlineNumber of data points N=6N = 6\newlineVariance σ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=386\sigma^2 = \frac{38}{6}\newlineσ26.333...\sigma^2 \approx 6.333...\newlineRounded to the nearest tenth, σ26.3\sigma^2 \approx 6.3

More problems from Variance and standard deviation