Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline2,4,3,4,9,5,82, 4, 3, 4, 9, 5, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____

Full solution

Q. In the data set below, what is the variance?\newline2,4,3,4,9,5,82, 4, 3, 4, 9, 5, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (2+4+3+4+9+5+8)/7(2 + 4 + 3 + 4 + 9 + 5 + 8)/7\newlineμ=35/7\mu = 35/7\newlineμ=5\mu = 5
  2. Calculate Sum of Squared Differences: Data set: 2,4,3,4,9,5,82, 4, 3, 4, 9, 5, 8
    μ=5\mu = 5
    Calculate the sum of the squared differences from the mean, Σ(xiμ)2\Sigma(x_i - \mu)^2.
    (25)2+(45)2+(35)2+(45)2+(95)2+(55)2+(85)2(2 - 5)^2 + (4 - 5)^2 + (3 - 5)^2 + (4 - 5)^2 + (9 - 5)^2 + (5 - 5)^2 + (8 - 5)^2
    =(3)2+(1)2+(2)2+(1)2+(4)2+(0)2+(3)2= (-3)^2 + (-1)^2 + (-2)^2 + (-1)^2 + (4)^2 + (0)^2 + (3)^2
    =9+1+4+1+16+0+9= 9 + 1 + 4 + 1 + 16 + 0 + 9
    =40= 40
  3. Calculate Variance: We have:\newlineΣ(xiμ)2=40\Sigma(x_i - \mu)^2= 40\newlineN=7N= 7\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=407\sigma^2 = \frac{40}{7}\newlineσ25.7\sigma^2 \approx 5.7 when rounded to the nearest tenth.

More problems from Variance and standard deviation