Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline2,3,8,8,4,2,82, 3, 8, 8, 4, 2, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline2,3,8,8,4,2,82, 3, 8, 8, 4, 2, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (2+3+8+8+4+2+8)/7(2 + 3 + 8 + 8 + 4 + 2 + 8)/7\newlineμ=35/7\mu = 35/7\newlineμ=5\mu = 5
  2. Calculate Squared Differences: Data set: 2,3,8,8,4,2,82, 3, 8, 8, 4, 2, 8
    μ=5\mu = 5
    Calculate the sum of the squared differences from the mean.
    (25)2+(35)2+(85)2+(85)2+(45)2+(25)2+(85)2(2 - 5)^2 + (3 - 5)^2 + (8 - 5)^2 + (8 - 5)^2 + (4 - 5)^2 + (2 - 5)^2 + (8 - 5)^2
    =(3)2+(2)2+(3)2+(3)2+(1)2+(3)2+(3)2= (-3)^2 + (-2)^2 + (3)^2 + (3)^2 + (-1)^2 + (-3)^2 + (3)^2
    =9+4+9+9+1+9+9= 9 + 4 + 9 + 9 + 1 + 9 + 9
    =50= 50
  3. Calculate Variance: We know:\newlineΣ(xiμ)2=50\Sigma(x_i - \mu)^2= 50\newlineN=7N= 7\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=50/7\sigma^2 = 50/7\newlineσ27.1\sigma^2 \approx 7.1 (rounded to the nearest tenth)

More problems from Variance and standard deviation