Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline2,3,8,2,1,6,62, 3, 8, 2, 1, 6, 6\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline2,3,8,2,1,6,62, 3, 8, 2, 1, 6, 6\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Squared Differences: Now that we have the mean, we calculate the squared differences from the mean for each data point.\newline(24)2+(34)2+(84)2+(24)2+(14)2+(64)2+(64)2(2 - 4)^2 + (3 - 4)^2 + (8 - 4)^2 + (2 - 4)^2 + (1 - 4)^2 + (6 - 4)^2 + (6 - 4)^2\newline= (2)2+(1)2+(4)2+(2)2+(3)2+(2)2+(2)2(-2)^2 + (-1)^2 + (4)^2 + (-2)^2 + (-3)^2 + (2)^2 + (2)^2\newline= 4+1+16+4+9+4+44 + 1 + 16 + 4 + 9 + 4 + 4\newline= 4242
  2. Find Variance: Finally, we divide the sum of squared differences by the number of data points to find the variance.\newlineΣ(xiμ)2=42\Sigma(x_i - \mu)^2 = 42\newlineN=7N = 7\newlineVariance σ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=42/7\sigma^2 = 42/7\newlineσ2=6\sigma^2 = 6\newlineSince the variance is a whole number, there is no need to round to the nearest tenth.

More problems from Variance and standard deviation