Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline2,2,4,6,8,6,72, 2, 4, 6, 8, 6, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline2,2,4,6,8,6,72, 2, 4, 6, 8, 6, 7\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (2+2+4+6+8+6+7)/7(2 + 2 + 4 + 6 + 8 + 6 + 7)/7\newlineμ=35/7\mu = 35/7\newlineμ=5\mu = 5
  2. Calculate Sum of Squared Differences: Data set: 2,2,4,6,8,6,72, 2, 4, 6, 8, 6, 7 \newlineμ=5\mu = 5\newlineCalculate the sum of the squared differences from the mean.\newlineΣ(xiμ)2=(25)2+(25)2+(45)2+(65)2+(85)2+(65)2+(75)2\Sigma(x_i - \mu)^2 = (2 - 5)^2 + (2 - 5)^2 + (4 - 5)^2 + (6 - 5)^2 + (8 - 5)^2 + (6 - 5)^2 + (7 - 5)^2\newline=(3)2+(3)2+(1)2+(1)2+(3)2+(1)2+(2)2= (-3)^2 + (-3)^2 + (-1)^2 + (1)^2 + (3)^2 + (1)^2 + (2)^2\newline=9+9+1+1+9+1+4= 9 + 9 + 1 + 1 + 9 + 1 + 4\newline=34= 34
  3. Calculate Variance: We know:\newlineΣ(xiμ)2=34\Sigma(x_i - \mu)^2= 34\newlineN=7N= 7\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=347\sigma^2 = \frac{34}{7}\newlineσ24.857\sigma^2 \approx 4.857\newlineRound to the nearest tenth: σ24.9\sigma^2 \approx 4.9

More problems from Variance and standard deviation