Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline2,1,9,7,82, 1, 9, 7, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline2,1,9,7,82, 1, 9, 7, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlinequestion_prompt: What is the variance of the data set 2,1,9,7,82, 1, 9, 7, 8?\newlineMean μ=(2+1+9+7+8)/5\mu = (2 + 1 + 9 + 7 + 8)/5\newlineμ=27/5\mu = 27/5\newlineμ=5.4\mu = 5.4
  2. Calculate Sum of Squared Deviations: Data set: 2,1,9,7,82, 1, 9, 7, 8 \newlineμ=5.4\mu = 5.4\newlineCalculate the sum of the squared deviations from the mean.\newlineΣ(xiμ)2=(25.4)2+(15.4)2+(95.4)2+(75.4)2+(85.4)2\Sigma(x_i - \mu)^2 = (2 - 5.4)^2 + (1 - 5.4)^2 + (9 - 5.4)^2 + (7 - 5.4)^2 + (8 - 5.4)^2\newline=(3.4)2+(4.4)2+(3.6)2+(1.6)2+(2.6)2= (-3.4)^2 + (-4.4)^2 + (3.6)^2 + (1.6)^2 + (2.6)^2\newline=11.56+19.36+12.96+2.56+6.76= 11.56 + 19.36 + 12.96 + 2.56 + 6.76\newline=53.2= 53.2
  3. Calculate Variance: We know:\newlineΣ(xiμ)2=53.2\Sigma(x_i - \mu)^2= 53.2\newlineN=5N= 5\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=53.2/5\sigma^2 = 53.2/5\newlineσ2=10.64\sigma^2 = 10.64\newlineσ210.6\sigma^2 \approx 10.6

More problems from Variance and standard deviation