Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline1,5,7,3,81, 5, 7, 3, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____

Full solution

Q. In the data set below, what is the variance?\newline1,5,7,3,81, 5, 7, 3, 8\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____
  1. Subtract and Square: Now, subtract the mean from each data point and square the result to find the squared differences.\newline(14.8)2=(3.8)2=14.44(1 - 4.8)^2 = (-3.8)^2 = 14.44\newline(54.8)2=(0.2)2=0.04(5 - 4.8)^2 = (0.2)^2 = 0.04\newline(74.8)2=(2.2)2=4.84(7 - 4.8)^2 = (2.2)^2 = 4.84\newline(34.8)2=(1.8)2=3.24(3 - 4.8)^2 = (-1.8)^2 = 3.24\newline(84.8)2=(3.2)2=10.24(8 - 4.8)^2 = (3.2)^2 = 10.24
  2. Sum Squared Differences: Sum the squared differences to find the total squared variation from the mean.\newlineΣ(xiμ)2=14.44+0.04+4.84+3.24+10.24\Sigma(x_i - \mu)^2 = 14.44 + 0.04 + 4.84 + 3.24 + 10.24\newlineΣ(xiμ)2=32.8\Sigma(x_i - \mu)^2 = 32.8
  3. Calculate Variance: Divide the total squared variation by the number of data points (NN) to find the variance.\newlineN=5N = 5 (since there are 55 data points)\newlineσ2=Σ(xiμ)2N\sigma^2 = \frac{\Sigma(x_i - \mu)^2}{N}\newlineσ2=32.85\sigma^2 = \frac{32.8}{5}\newlineσ2=6.56\sigma^2 = 6.56
  4. Round to Nearest Tenth: Round the variance to the nearest tenth. σ26.6\sigma^2 \approx 6.6

More problems from Variance and standard deviation