Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline1,2,6,2,91, 2, 6, 2, 9\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____

Full solution

Q. In the data set below, what is the variance?\newline1,2,6,2,91, 2, 6, 2, 9\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance σ2\sigma^2: _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (1+2+6+2+9)/5(1 + 2 + 6 + 2 + 9)/5\newlineμ=20/5\mu = 20/5\newlineμ=4\mu = 4
  2. Calculate Sum of Squared Deviations: Data set: 1,2,6,2,91, 2, 6, 2, 9 \newlineμ=4\mu = 4\newlineCalculate the sum of the squared deviations from the mean.\newline(14)2+(24)2+(64)2+(24)2+(94)2(1 - 4)^2 + (2 - 4)^2 + (6 - 4)^2 + (2 - 4)^2 + (9 - 4)^2\newline=(3)2+(2)2+(2)2+(2)2+(5)2= (-3)^2 + (-2)^2 + (2)^2 + (-2)^2 + (5)^2\newline=9+4+4+4+25= 9 + 4 + 4 + 4 + 25\newline=46= 46
  3. Calculate Variance: We have:\newlineΣ(xiμ)2=46\Sigma(x_i - \mu)^2= 46\newlineN=5N= 5\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=46/5\sigma^2 = 46/5\newlineσ2=9.2\sigma^2 = 9.2\newlineσ29.2\sigma^2 \approx 9.2 (since it is already at one decimal place, no further rounding is needed)

More problems from Variance and standard deviation