Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In the data set below, what is the variance?\newline1,1,6,1,3,61, 1, 6, 1, 3, 6\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____

Full solution

Q. In the data set below, what is the variance?\newline1,1,6,1,3,61, 1, 6, 1, 3, 6\newlineIf the answer is a decimal, round it to the nearest tenth.\newlinevariance (σ2)(\sigma^2): _____
  1. Calculate Mean: Calculate the mean of the data set.\newlineMean = (1+1+6+1+3+6)/6(1 + 1 + 6 + 1 + 3 + 6)/6\newlineμ=18/6\mu = 18/6\newlineμ=3\mu = 3
  2. Calculate Sum of Squared Differences: Data set: 1,1,6,1,3,61, 1, 6, 1, 3, 6 \newlineμ=3\mu = 3\newlineCalculate the sum of the squared differences from the mean.\newline(13)2+(13)2+(63)2+(13)2+(33)2+(63)2(1 - 3)^2 + (1 - 3)^2 + (6 - 3)^2 + (1 - 3)^2 + (3 - 3)^2 + (6 - 3)^2\newline=(2)2+(2)2+(3)2+(2)2+(0)2+(3)2= (-2)^2 + (-2)^2 + (3)^2 + (-2)^2 + (0)^2 + (3)^2\newline=4+4+9+4+0+9= 4 + 4 + 9 + 4 + 0 + 9\newline=30= 30
  3. Calculate Variance: We have:\newlineΣ(xiμ)2=30\Sigma(x_i - \mu)^2= 30\newlineN=6N= 6\newlineCalculate the variance and round your answer to the nearest tenth.\newlineσ2=(Σ(xiμ)2)/N\sigma^2 = (\Sigma(x_i - \mu)^2)/N\newlineσ2=30/6\sigma^2 = 30/6\newlineσ2=5\sigma^2 = 5\newlineSince the result is not a decimal, there is no need to round it.

More problems from Variance and standard deviation