Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\KLM,m/_K=(6x+4)^(@),m/_L=(x+6)^(@), and 
m/_M=(2x-1)^(@). Find 
m/_M.
Answer:

In KLM,mK=(6x+4),mL=(x+6) \triangle \mathrm{KLM}, \mathrm{m} \angle K=(6 x+4)^{\circ}, \mathrm{m} \angle L=(x+6)^{\circ} , and mM=(2x1) \mathrm{m} \angle M=(2 x-1)^{\circ} . Find mM \mathrm{m} \angle M .\newlineAnswer:

Full solution

Q. In KLM,mK=(6x+4),mL=(x+6) \triangle \mathrm{KLM}, \mathrm{m} \angle K=(6 x+4)^{\circ}, \mathrm{m} \angle L=(x+6)^{\circ} , and mM=(2x1) \mathrm{m} \angle M=(2 x-1)^{\circ} . Find mM \mathrm{m} \angle M .\newlineAnswer:
  1. Triangle Angle Sum: In triangle KLM, the sum of the angles must equal 180180 degrees. This is a fundamental property of triangles.\newlineCalculation: m/_K+m/_L+m/_M=180m/\_K + m/\_L + m/\_M = 180 degrees\newlineSubstitute the given expressions for m/_Km/\_K and m/_Lm/\_L: (6x+4)+(x+6)+m/_M=180(6x+4) + (x+6) + m/\_M = 180
  2. Simplify Equation: Combine like terms to simplify the equation.\newlineCalculation: (6x+x)+(4+6)+mM=180(6x + x) + (4 + 6) + \frac{m}{M} = 180\newline7x+10+mM=1807x + 10 + \frac{m}{M} = 180
  3. Isolate Terms: Subtract 1010 from both sides to isolate terms with xx on one side and constants on the other.\newlineCalculation: 7x+mM=180107x + \frac{m}{M} = 180 - 10\newline7x+mM=1707x + \frac{m}{M} = 170
  4. Substitute Expression: We know that m/M=(2x1)m/_{M} = (2x-1) degrees, so we can substitute this expression into our equation.\newlineCalculation: 7x+(2x1)=1707x + (2x - 1) = 170
  5. Combine Like Terms: Combine like terms to solve for xx.\newlineCalculation: 7x+2x1=1707x + 2x - 1 = 170\newline9x1=1709x - 1 = 170
  6. Solve for x: Add 11 to both sides to isolate the term with xx.\newlineCalculation: 9x=170+19x = 170 + 1\newline9x=1719x = 171
  7. Find mM\frac{m}{M}: Divide both sides by 99 to solve for xx.\newlineCalculation: x=1719x = \frac{171}{9}\newlinex=19x = 19
  8. Final Calculation: Now that we have the value of xx, we can find m/Mm/_{M} by substituting xx back into the expression for m/Mm/_{M}.
    Calculation: m/M=(2x1)m/_{M} = (2x - 1)
    m/M=(2×191)m/_{M} = (2\times 19 - 1)
    m/M=(381)m/_{M} = (38 - 1)
    m/M=37m/_{M} = 37 degrees

More problems from Find derivatives of using multiple formulae