Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In 
/_\GHI,m/_G=(5x+17)^(@),m/_H=(4x-10)^(@), and 
m/_I=(3x+5)^(@).
Find 
m/_G.
Answer:

In GHI,mG=(5x+17),mH=(4x10) \triangle \mathrm{GHI}, \mathrm{m} \angle G=(5 x+17)^{\circ}, \mathrm{m} \angle H=(4 x-10)^{\circ} , and mI=(3x+5) \mathrm{m} \angle I=(3 x+5)^{\circ} .\newlineFind mG \mathrm{m} \angle G .\newlineAnswer:

Full solution

Q. In GHI,mG=(5x+17),mH=(4x10) \triangle \mathrm{GHI}, \mathrm{m} \angle G=(5 x+17)^{\circ}, \mathrm{m} \angle H=(4 x-10)^{\circ} , and mI=(3x+5) \mathrm{m} \angle I=(3 x+5)^{\circ} .\newlineFind mG \mathrm{m} \angle G .\newlineAnswer:
  1. Triangle Angle Sum Property: In triangle GHI, the sum of the angles must equal 180180 degrees because it is a property of all triangles. We can write this as an equation:\newlinem/G+m/H+m/I=180m/_{G} + m/_{H} + m/_{I} = 180^{\circ}\newlineSubstitute the given expressions for m/Gm/_{G}, m/Hm/_{H}, and m/Im/_{I}:\newline(5x+17)+(4x10)+(3x+5)=180(5x+17)^{\circ} + (4x-10)^{\circ} + (3x+5)^{\circ} = 180^{\circ}
  2. Combine Like Terms: Combine like terms to simplify the equation:\newline5x+17+4x10+3x+5=1805x + 17 + 4x - 10 + 3x + 5 = 180\newline5x+4x+3x+1710+5=1805x + 4x + 3x + 17 - 10 + 5 = 180\newline12x+12=18012x + 12 = 180
  3. Isolate x Term: Subtract 1212 from both sides to isolate the term with xx:\newline12x+1212=1801212x + 12 - 12 = 180 - 12\newline12x=16812x = 168
  4. Solve for x: Divide both sides by 1212 to solve for x:\newline12x12=16812\frac{12x}{12} = \frac{168}{12}\newlinex=14x = 14
  5. Find Angle G: Now that we have the value of xx, we can find m/_Gm/\_G by substituting xx back into the expression for m/_Gm/\_G:
    m/_G=(5x+17)@m/\_G = (5x+17)^{@}
    m/_G=(5(14)+17)@m/\_G = (5(14)+17)^{@}
    m/_G=(70+17)@m/\_G = (70+17)^{@}
    m/_G=87@m/\_G = 87^{@}

More problems from Find derivatives of using multiple formulae