Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-y+y^(3)-3y^(2)+3x^(2)=0 then find 
(dy)/(dx) at the point 
(-1,3).
Answer: 
(dy)/(dx)|_((-1,3))=

If y+y33y2+3x2=0 -y+y^{3}-3 y^{2}+3 x^{2}=0 then find dydx \frac{d y}{d x} at the point (1,3) (-1,3) .\newlineAnswer: dydx(1,3)= \left.\frac{d y}{d x}\right|_{(-1,3)}=

Full solution

Q. If y+y33y2+3x2=0 -y+y^{3}-3 y^{2}+3 x^{2}=0 then find dydx \frac{d y}{d x} at the point (1,3) (-1,3) .\newlineAnswer: dydx(1,3)= \left.\frac{d y}{d x}\right|_{(-1,3)}=
  1. Implicit Differentiation: To find the derivative dydx\frac{dy}{dx}, we need to implicitly differentiate the given equation with respect to xx. The equation is y+y33y2+3x2=0-y + y^3 - 3y^2 + 3x^2 = 0.
  2. Chain Rule Application: Differentiate each term with respect to xx. For terms with yy, we use the chain rule, treating yy as a function of xx (y(x)y(x)). The derivative of y-y with respect to xx is dydx-\frac{dy}{dx}. The derivative of y3y^3 with respect to xx is yy00 by the chain rule. The derivative of yy11 with respect to xx is yy33 by the chain rule. The derivative of yy44 with respect to xx is yy66.
  3. Grouping Terms: Writing the derivatives out, we get: dydx+3y2dydx6ydydx+6x=0-\frac{dy}{dx} + 3y^2 \frac{dy}{dx} - 6y \frac{dy}{dx} + 6x = 0.
  4. Factor Out dydx\frac{dy}{dx}: Now we group the terms with dydx\frac{dy}{dx} on one side and the term with xx on the other side:\newlinedydx+3y2dydx6ydydx=6x-\frac{dy}{dx} + 3y^2 \cdot \frac{dy}{dx} - 6y \cdot \frac{dy}{dx} = -6x.
  5. Solve for dydx\frac{dy}{dx}: Factor out dydx\frac{dy}{dx} from the left side of the equation:\newlinedydx×(1+3y26y)=6x\frac{dy}{dx} \times (-1 + 3y^2 - 6y) = -6x.
  6. Substitute Values: Solve for dydx\frac{dy}{dx} by dividing both sides by (1+3y26y)(-1 + 3y^2 - 6y):dydx=6x(1+3y26y)\frac{dy}{dx} = \frac{-6x}{(-1 + 3y^2 - 6y)}.
  7. Calculate Denominator: Now we need to evaluate dydx\frac{dy}{dx} at the point (1,3)(-1,3). Substitute x=1x = -1 and y=3y = 3 into the equation:\newlinedydx(1,3)=6(1)(1+3(3)26(3))\frac{dy}{dx}\bigg|_{(-1,3)} = \frac{-6(-1)}{(-1 + 3(3)^2 - 6(3))}.
  8. Calculate Numerator: Calculate the denominator:\newline1+3(3)26(3)=1+3(9)18=1+2718=8-1 + 3(3)^2 - 6(3) = -1 + 3(9) - 18 = -1 + 27 - 18 = 8.
  9. Divide to Find dydx\frac{dy}{dx}: Calculate the numerator:\newline6(1)=6-6(-1) = 6.
  10. Simplify Fraction: Now, divide the numerator by the denominator to find dy/dxdy/dx at the point (1,3)(-1,3):dy/dx(1,3)=68.dy/dx|_{(-1,3)} = \frac{6}{8}.
  11. Simplify Fraction: Now, divide the numerator by the denominator to find dydx\frac{dy}{dx} at the point (1,3)(-1,3):
    dydx(1,3)=68\left.\frac{dy}{dx}\right|_{(-1,3)} = \frac{6}{8}. Simplify the fraction:
    dydx(1,3)=34\left.\frac{dy}{dx}\right|_{(-1,3)} = \frac{3}{4}.

More problems from Find derivatives of using multiple formulae