Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
-y^(2)=x^(2)-x+3y^(3) then find 
(dy)/(dx) at the point 
(-4,-2).
Answer: 
(dy)/(dx)|_((-4,-2))=

If y2=x2x+3y3 -y^{2}=x^{2}-x+3 y^{3} then find dydx \frac{d y}{d x} at the point (4,2) (-4,-2) .\newlineAnswer: dydx(4,2)= \left.\frac{d y}{d x}\right|_{(-4,-2)}=

Full solution

Q. If y2=x2x+3y3 -y^{2}=x^{2}-x+3 y^{3} then find dydx \frac{d y}{d x} at the point (4,2) (-4,-2) .\newlineAnswer: dydx(4,2)= \left.\frac{d y}{d x}\right|_{(-4,-2)}=
  1. Differentiate Left Side: First, we need to differentiate both sides of the equation with respect to xx to find dydx\frac{dy}{dx}. The equation is y2=x2x+3y3-y^2 = x^2 - x + 3y^3. We will use implicit differentiation because yy is a function of xx.
  2. Differentiate Right Side: Differentiate the left side of the equation with respect to xx: d(y2)dx=2ydydx\frac{d(-y^2)}{dx} = -2y \cdot \frac{dy}{dx}.
  3. Equate Derivatives: Differentiate the right side of the equation with respect to xx: d(x2x+3y3)dx=2x1+3×3y2×dydx\frac{d(x^2 - x + 3y^3)}{dx} = 2x - 1 + 3 \times 3y^2 \times \frac{dy}{dx} because we need to use the chain rule for the term 3y33y^3.
  4. Rearrange Equation: Now we equate the derivatives from the left and right sides: 2y(dydx)=2x1+9y2(dydx)-2y \cdot \left(\frac{dy}{dx}\right) = 2x - 1 + 9y^2 \cdot \left(\frac{dy}{dx}\right).
  5. Isolate dydx\frac{dy}{dx}: Rearrange the equation to solve for dydx\frac{dy}{dx}: (dydx)(9y2+2y)=2x1\left(\frac{dy}{dx}\right) \cdot (9y^2 + 2y) = 2x - 1.
  6. Substitute Point: Isolate dydx\frac{dy}{dx}: dydx=2x19y2+2y\frac{dy}{dx} = \frac{2x - 1}{9y^2 + 2y}.
  7. Calculate Numerator: Now we substitute the point (4,2)(-4, -2) into the equation to find the value of dydx\frac{dy}{dx} at that point: (dydx)(4,2)=(2(4)1)(9(2)2+2(2))\left(\frac{dy}{dx}\right)|_{(-4,-2)} = \frac{(2*(-4) - 1)}{(9*(-2)^2 + 2*(-2))}.
  8. Calculate Denominator: Calculate the numerator: 2×(4)1=81=92 \times (-4) - 1 = -8 - 1 = -9.
  9. Divide Numerator: Calculate the denominator: 9(2)2+2(2)=944=364=329*(-2)^2 + 2*(-2) = 9*4 - 4 = 36 - 4 = 32.
  10. Divide Numerator: Calculate the denominator: 9(2)2+2(2)=9×44=364=329(-2)^2 + 2(-2) = 9\times 4 - 4 = 36 - 4 = 32.Now divide the numerator by the denominator to get the value of dydx\frac{dy}{dx} at the point (4,2)(-4, -2): (dydx)(4,2)=932(\frac{dy}{dx})|_{(-4,-2)} = -\frac{9}{32}.

More problems from Simplify variable expressions using properties