Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
x=t^(2)-1 and 
y=ln t, what is 
(d^(2)y)/(dx^(2)) in terms of 
t ?
(a) 
-(1)/(2t^(4))
b) 
(1)/(2t^(4))
c) 
-(1)/(x^(3))
d) 
-(1)/(-2t^(2))
e) 
(1)/(2t^(2))

If x=t21 x=t^{2}-1 and y=lnt y=\ln t , what is d2ydx2 \frac{d^{2} y}{d x^{2}} in terms of t t ?\newline(a) 12t4 -\frac{1}{2 t^{4}} \newlineb) 12t4 \frac{1}{2 t^{4}} \newlinec) 1x3 -\frac{1}{x^{3}} \newlined) 12t2 -\frac{1}{-2 t^{2}} \newlinee) 12t2 \frac{1}{2 t^{2}}

Full solution

Q. If x=t21 x=t^{2}-1 and y=lnt y=\ln t , what is d2ydx2 \frac{d^{2} y}{d x^{2}} in terms of t t ?\newline(a) 12t4 -\frac{1}{2 t^{4}} \newlineb) 12t4 \frac{1}{2 t^{4}} \newlinec) 1x3 -\frac{1}{x^{3}} \newlined) 12t2 -\frac{1}{-2 t^{2}} \newlinee) 12t2 \frac{1}{2 t^{2}}
  1. Find Derivative of \newline: First, we need to find the first derivative of yy with respect to tt, which is (dy)/(dt)(dy)/(dt).\newlineSince y=lnty = \ln t, we use the derivative of the natural logarithm function.\newline(dy)/(dt)=1/t(dy)/(dt) = 1/t
  2. Find Derivative of xx: Next, we need to find the first derivative of xx with respect to tt, which is (dx)/(dt)(dx)/(dt).\newlineSince x=t21x = t^2 - 1, we use the power rule for differentiation.\newline(dx)/(dt)=2t(dx)/(dt) = 2t
  3. Find Derivative of y with x: Now, we will find the first derivative of yy with respect to xx, which is dydx\frac{dy}{dx}, using the chain rule.dydx=dydtdtdx\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}We already have dydt=1t\frac{dy}{dt} = \frac{1}{t} and dxdt=2t\frac{dx}{dt} = 2t, so we need to find dtdx\frac{dt}{dx}, which is the reciprocal of dxdt\frac{dx}{dt}.dtdx=1dxdt=12t\frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{2t}
  4. Substitute Values for dydx\frac{dy}{dx}: Substitute the values we have into the chain rule to find dydx\frac{dy}{dx}.dydx=1t12t=12t2\frac{dy}{dx} = \frac{1}{t} \cdot \frac{1}{2t} = \frac{1}{2t^2}
  5. Find Second Derivative of yy with xx: Now we need to find the second derivative of yy with respect to xx, which is d2ydx2\frac{d^2y}{dx^2}. To do this, we differentiate dydx\frac{dy}{dx} with respect to xx. d2ydx2=ddx(12t2)\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{1}{2t^2} \right)
  6. Differentiate 12t2\frac{1}{2t^2} with tt: To differentiate (12t2)\left(\frac{1}{2t^2}\right) with respect to xx, we need to apply the chain rule again, since tt is a function of xx. d2ydx2=ddt(12t2)dtdx\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{1}{2t^2}\right) \cdot \frac{dt}{dx}
  7. Substitute dtdx\frac{dt}{dx}: First, differentiate 12t2\frac{1}{2t^2} with respect to tt.
    ddt(12t2)=ddt(t22)=2t3/2=1t3\frac{d}{dt} \left(\frac{1}{2t^2}\right) = \frac{d}{dt} \left(\frac{t^{-2}}{2}\right) = -2 \cdot t^{-3} / 2 = -\frac{1}{t^3}
  8. Substitute (dt)/(dx)(dt)/(dx): First, differentiate 1/(2t2)1 / (2t^2) with respect to tt.
    ddt(1/(2t2))=ddt(t2/2)=2t3/2=1/t3\frac{d}{dt} (1 / (2t^2)) = \frac{d}{dt} (t^{-2} / 2) = -2 \cdot t^{-3} / 2 = -1 / t^3Now, substitute (dt)/(dx)(dt)/(dx) from the previous steps.
    d2ydx2=(1/t3)(1/(2t))\frac{d^2y}{dx^2} = (-1 / t^3) \cdot (1 / (2t))
    d2ydx2=1/(2t4)\frac{d^2y}{dx^2} = -1 / (2t^4)

More problems from Find derivatives of using multiple formulae