Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
x=t^(2)-1 and 
y= int, what is 
(d^(2)y)/(dx^(2)) in terms of t?
(ai) 
-(1)/(2t^(4))
b) 
(1)/(2t^(4))
c) 
-(1)/(z^(3))
d) 
-(1)/(-2e^(2))
e) 
(1)/(2t^(2))

If x=t21x=t^{2}-1 and y=y = lntlnt, what is d2ydx2\frac{d^{2}y}{dx^{2}} in terms of tt?\newlinea)12t4a) \frac{-1}{2t^{4}}\newlineb)12t4b) \frac{1}{2t^{4}}\newlinec)1z3c) \frac{-1}{z^{3}}\newlined)12e2d) \frac{-1}{-2e^{2}}\newlinee)12t2e) \frac{1}{2t^{2}}

Full solution

Q. If x=t21x=t^{2}-1 and y=y = lntlnt, what is d2ydx2\frac{d^{2}y}{dx^{2}} in terms of tt?\newlinea)12t4a) \frac{-1}{2t^{4}}\newlineb)12t4b) \frac{1}{2t^{4}}\newlinec)1z3c) \frac{-1}{z^{3}}\newlined)12e2d) \frac{-1}{-2e^{2}}\newlinee)12t2e) \frac{1}{2t^{2}}
  1. Find dydx\frac{dy}{dx} using chain rule: First, we need to find dydx\frac{dy}{dx} using the chain rule since yy is an integral with respect to tt and xx is a function of tt.\newlinedydx=dydtdtdx\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}
  2. Derivative of yy with respect to tt: Given y=y = \int, the derivative of yy with respect to tt is 11, so dydt=1\frac{dy}{dt} = 1.
  3. Find dtdx\frac{dt}{dx}: Now, we need to find dtdx\frac{dt}{dx}. Since x=t21x = t^2 - 1, we can rearrange it to t=x+1t = \sqrt{x + 1}. Therefore, dtdx=12x+1\frac{dt}{dx} = \frac{1}{2\sqrt{x + 1}}.
  4. Substitute dtdx\frac{dt}{dx} into dydx\frac{dy}{dx} equation: Substitute dtdx\frac{dt}{dx} into the dydx\frac{dy}{dx} equation.\newlinedydx=1×(12x+1)=12x+1\frac{dy}{dx} = 1 \times \left(\frac{1}{2\sqrt{x + 1}}\right) = \frac{1}{2\sqrt{x + 1}}
  5. Find second derivative d2ydx2\frac{d^2y}{dx^2}: Next, we need to find the second derivative, d2ydx2\frac{d^2y}{dx^2}. We'll use the chain rule again, considering that xx is a function of tt.d2ydx2=ddx(dydx)\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right)
  6. Differentiate dydx\frac{dy}{dx} with respect to xx: Differentiate dydx\frac{dy}{dx} with respect to xx.\newlined2ydx2=ddx(12x+1)\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{2\sqrt{x + 1}}\right)
  7. Differentiate 12x+1\frac{1}{2\sqrt{x + 1}}: To differentiate 12x+1\frac{1}{2\sqrt{x + 1}}, we'll use the derivative of the outer function 1u\frac{1}{u} with respect to uu, which is 1u2-\frac{1}{u^2}, and then multiply by the derivative of the inner function x+1\sqrt{x + 1} with respect to xx.
    d2ydx2=14(x+1)12x+1\frac{d^2y}{dx^2} = -\frac{1}{4(x + 1)} \cdot \frac{1}{2\sqrt{x + 1}}
  8. Simplify the expression: Simplify the expression. d2ydx2=14(x+1)(2x+1)\frac{d^2y}{dx^2} = -\frac{1}{4(x + 1)(2\sqrt{x + 1})}
  9. Substitute xx back into the equation: Since x=t21x = t^2 - 1, substitute xx back into the equation.d2ydx2=14(t2)(2t)\frac{d^2y}{dx^2} = -\frac{1}{4(t^2)(2t)}
  10. Simplify the expression further: Simplify the expression further. d2ydx2=18t3\frac{d^2y}{dx^2} = -\frac{1}{8t^3}

More problems from Find derivatives of using multiple formulae