Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
x^(2)-y^(3)-5=4x then find 
(dy)/(dx) at the point 
(-4,3).
Answer: 
(dy)/(dx)|_((-4,3))=

If x2y35=4x x^{2}-y^{3}-5=4 x then find dydx \frac{d y}{d x} at the point (4,3) (-4,3) .\newlineAnswer: dydx(4,3)= \left.\frac{d y}{d x}\right|_{(-4,3)}=

Full solution

Q. If x2y35=4x x^{2}-y^{3}-5=4 x then find dydx \frac{d y}{d x} at the point (4,3) (-4,3) .\newlineAnswer: dydx(4,3)= \left.\frac{d y}{d x}\right|_{(-4,3)}=
  1. Differentiate Equation: First, we need to find the derivative of the given equation with respect to xx. The equation is x2y35=4xx^2 - y^3 - 5 = 4x. We will use implicit differentiation because the equation involves both xx and yy.\newlineDifferentiate both sides of the equation with respect to xx:\newlineddx(x2)ddx(y3)ddx(5)=ddx(4x)\frac{d}{dx} (x^2) - \frac{d}{dx} (y^3) - \frac{d}{dx} (5) = \frac{d}{dx} (4x)\newline2x3y2dydx0=42x - 3y^2 \frac{dy}{dx} - 0 = 4
  2. Solve for dydx\frac{dy}{dx}: Now, we solve for dydx\frac{dy}{dx}:2x3y2(dydx)=42x - 3y^2 \left(\frac{dy}{dx}\right) = 43y2(dydx)=42x-3y^2 \left(\frac{dy}{dx}\right) = 4 - 2xdydx=42x3y2\frac{dy}{dx} = \frac{4 - 2x}{-3y^2}
  3. Substitute Point for Slope: Next, we substitute the point (4,3)(-4,3) into the derivative to find the slope at that point:\newline(dydx)(4,3)=(42(4))(3(3)2)(\frac{dy}{dx})|_{(-4,3)} = \frac{(4 - 2(-4))}{(-3(3)^2)}\newline(dydx)(4,3)=(4+8)(3×9)(\frac{dy}{dx})|_{(-4,3)} = \frac{(4 + 8)}{(-3 \times 9)}\newline(dydx)(4,3)=12(27)(\frac{dy}{dx})|_{(-4,3)} = \frac{12}{(-27)}\newline(dydx)(4,3)=49(\frac{dy}{dx})|_{(-4,3)} = -\frac{4}{9}

More problems from Simplify variable expressions using properties