Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If u=exy+eyz+ezx u=e^{\frac{x}{y}}+e^{\frac{y}{z}}+e^{\frac{z}{x}} then show that xux+yuy+zuz=0 x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=0 \newlineexy(xy+xy)+eyz(yx+2y)+ezx(x1z+z) e^{\frac{x}{y}}\left(\frac{x}{y}+xy\right)+e^{\frac{y}{z}}\left(\frac{y}{x}+2y\right)+e^{\frac{z}{x}}(x_{1}z+z)

Full solution

Q. If u=exy+eyz+ezx u=e^{\frac{x}{y}}+e^{\frac{y}{z}}+e^{\frac{z}{x}} then show that xux+yuy+zuz=0 x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=0 \newlineexy(xy+xy)+eyz(yx+2y)+ezx(x1z+z) e^{\frac{x}{y}}\left(\frac{x}{y}+xy\right)+e^{\frac{y}{z}}\left(\frac{y}{x}+2y\right)+e^{\frac{z}{x}}(x_{1}z+z)
  1. Find Partial Derivative of uu with Respect to xx: Let's start by finding the partial derivative of uu with respect to xx.
    u=e(x/y)+e(y/z)+e(z/x)u = e^{(x/y)} + e^{(y/z)} + e^{(z/x)}
    ux=x(e(x/y))+x(e(y/z))+x(e(z/x))\frac{\partial u}{\partial x} = \frac{\partial}{\partial x}(e^{(x/y)}) + \frac{\partial}{\partial x}(e^{(y/z)}) + \frac{\partial}{\partial x}(e^{(z/x)})
    Since yy and zz are treated as constants when taking the partial derivative with respect to xx, the second and third terms do not depend on xx and their derivatives are zero.
    xx00
    So, xx11
  2. Find Partial Derivative of uu with Respect to yy: Now let's find the partial derivative of uu with respect to yy.
    u=e(x/y)+e(y/z)+e(z/x)u = e^{(x/y)} + e^{(y/z)} + e^{(z/x)}
    uy=y(e(x/y))+y(e(y/z))+y(e(z/x))\frac{\partial u}{\partial y} = \frac{\partial}{\partial y}(e^{(x/y)}) + \frac{\partial}{\partial y}(e^{(y/z)}) + \frac{\partial}{\partial y}(e^{(z/x)})
    The first term is a function of x/yx/y, so we use the chain rule: y(e(x/y))=xy2e(x/y)\frac{\partial}{\partial y}(e^{(x/y)}) = -\frac{x}{y^2} \cdot e^{(x/y)}
    The second term is a function of y/zy/z, so its derivative is (1/z)e(y/z)(1/z)e^{(y/z)}
    The third term does not depend on yy, so its derivative is zero.
    So, yy11
  3. Find Partial Derivative of uu with Respect to zz: Next, we find the partial derivative of uu with respect to zz.
    u=e(x/y)+e(y/z)+e(z/x)u = e^{(x/y)} + e^{(y/z)} + e^{(z/x)}
    (u/z)=(/z)(e(x/y))+(/z)(e(y/z))+(/z)(e(z/x))(\partial u/\partial z) = (\partial/\partial z)(e^{(x/y)}) + (\partial/\partial z)(e^{(y/z)}) + (\partial/\partial z)(e^{(z/x)})
    The first term does not depend on zz, so its derivative is zero.
    The second term is a function of y/zy/z, so we use the chain rule: (/z)(e(y/z))=y/z2e(y/z)(\partial/\partial z)(e^{(y/z)}) = -y/z^2 \cdot e^{(y/z)}
    The third term is a function of z/xz/x, so its derivative is zz00
    So, zz11
  4. Multiply and Sum Partial Derivatives: Now we multiply each partial derivative by its corresponding variable and sum them up. \newlinex(u/x)+y(u/y)+z(u/z)=x(1/y)e(x/y)+y(x/y2e(x/y)+(1/z)e(y/z))+z(y/z2e(y/z)+(1/x)e(z/x))x*(\partial u/\partial x) + y*(\partial u/\partial y) + z*(\partial u/\partial z) = x*(1/y)e^{(x/y)} + y*(-x/y^2 * e^{(x/y)} + (1/z)e^{(y/z)}) + z*(-y/z^2 * e^{(y/z)} + (1/x)e^{(z/x)})\newlineSimplify the expression by combining like terms and factoring out common factors.\newline=e(x/y)+(x/y)e(x/y)+(y/z)e(y/z)(y/z)e(y/z)+(z/x)e(z/x)= e^{(x/y)} + (-x/y)e^{(x/y)} + (y/z)e^{(y/z)} - (y/z)e^{(y/z)} + (z/x)e^{(z/x)}\newline=e(x/y)(x/y)e(x/y)+(y/z)e(y/z)(y/z)e(y/z)+(z/x)e(z/x)= e^{(x/y)} - (x/y)e^{(x/y)} + (y/z)e^{(y/z)} - (y/z)e^{(y/z)} + (z/x)e^{(z/x)}\newlineNotice that the terms e(x/y)e^{(x/y)} and (x/y)e(x/y)-(x/y)e^{(x/y)} cancel each other out, as do the terms (y/z)e(y/z)(y/z)e^{(y/z)} and (y/z)e(y/z)-(y/z)e^{(y/z)}.\newlineSo we are left with (z/x)e(z/x)(z/x)e^{(z/x)}

More problems from Find derivatives of using multiple formulae