Write Trig Identity: We know that tanA=cosAsinA. Given tanA=43, we can write cosAsinA=43.
Apply Pythagorean Identity: To find sinA and cosA, we will use the Pythagorean identity: sin2A+cos2A=1.
Assume Values for sinA and cosA: Let's assume sinA=k3 and cosA=k4 for some k, because tanA=cosAsinA=43. We need to find the value of k.
Substitute Values in Pythagorean Identity: Using the Pythagorean identity, we substitute sinA and cosA with the assumed values: (k3)2+(k4)2=1.
Solve for k: Solving the equation for k, we get k29+k216=1.
Find Value of k: Combining the terms, we have (9+16)/k2=1, which simplifies to 25/k2=1.
Calculate sinA and cosA: Solving for k2, we find k2=25.
Multiply sinA and cosA: Taking the square root of both sides, we get k=5, since k is positive (k represents a length in the context of a right triangle).
Prove Sin A Cos A: Now we can find sinA and cosA using the values of k: sinA=k3=53 and cosA=k4=54.
Prove Sin A Cos A: Now we can find sinA and cosA using the values of k: sinA=k3=53 and cosA=k4=54.To prove sinAcosA=2512, we multiply the values we found: sinA⋅cosA=(53)⋅(54).
Prove Sin A Cos A: Now we can find sinA and cosA using the values of k: sinA=k3=53 and cosA=k4=54.To prove sinAcosA=2512, we multiply the values we found: sinA⋅cosA=(53)⋅(54).Calculating the product, we get sinA⋅cosA=2512, which is what we wanted to prove.
More problems from Find a value using two-variable equations