Q. If sinx=32,x in quadrant I, then find the exact answers for the following (without finding x ):sin(2x)=cos(2x)=tan(2x)=
Use double angle formulas: Step 1: Use the double angle formulas for sine and cosine.sin(2x)=2sin(x)cos(x)cos(2x)=cos2(x)−sin2(x)
Calculate cos(x): Step 2: Calculate cos(x) using the Pythagorean identity since sin(x)=32.cos(x)=1−sin2(x)=1−(32)2=1−94=95=35
Substitute into formulas: Step 3: Substitute sin(x) and cos(x) into the double angle formulas.sin(2x)=2⋅(32)⋅(35)=945cos(2x)=(35)2−(32)2=95−94=91
Calculate tan(2x): Step 4: Calculate tan(2x) using the formula tan(2x)=cos(2x)sin(2x).tan(2x)=945/91=45
More problems from Find derivatives of sine and cosine functions