Q. If sinA=5345 and cosB=1312 and angles A and B are in Quadrant I, find the value of tan(A+B).Answer:
Find Trigonometric Functions: Use the Pythagorean identity to find cosA and sinB. Since A is in Quadrant I, cosA will be positive. Similarly, since B is in Quadrant I, sinB will also be positive. For angle A, we have sinA=5345. Using the Pythagorean identity sin2A+cos2A=1, we can find cosA. sinB0. For angle B, we have sinB2. Using the Pythagorean identity sinB3, we can find sinB. sinB5.
Calculate Tangent of Sum: Use the angle sum identity for tangent to find tan(A+B). The angle sum identity for tangent is tan(A+B)=1−tanA⋅tanBtanA+tanB. We need to find tanA and tanB. tanA=cosAsinA=28/5345/53=2845. tanB=cosBsinB=12/135/13=125.
Substitute and Simplify: Substitute the values of tanA and tanB into the angle sum identity.tan(A+B)=1−tanA⋅tanBtanA+tanB=1−(2845⋅125)2845+125.
Substitute and Simplify: Substitute the values of tanA and tanB into the angle sum identity.tan(A+B)=1−tanA⋅tanBtanA+tanB=1−(45/28⋅5/12)45/28+5/12.Perform the addition and multiplication in the numerator and denominator.tan(A+B)=1−(45/28)⋅(5/12)(45/28)⋅(12/12)+(5/12)⋅(28/28)tan(A+B)=1−(225/336)(540/336)+(140/336)tan(A+B)=1−(225/336)680/336tan(A+B)=(336/336)−(225/336)680/336tan(A+B)=111/336680/336
Substitute and Simplify: Substitute the values of tanA and tanB into the angle sum identity.tan(A+B)=1−tanA⋅tanBtanA+tanB=1−(45/28⋅5/12)45/28+5/12.Perform the addition and multiplication in the numerator and denominator.tan(A+B)=1−(45/28)⋅(5/12)(45/28)⋅(12/12)+(5/12)⋅(28/28)tan(A+B)=1−(225/336)(540/336)+(140/336)tan(A+B)=1−(225/336)680/336tan(A+B)=(336/336)−(225/336)680/336tan(A+B)=111/336680/336Simplify the fraction.tan(A+B)=⋅680/336=336/111111680