Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
sin A=(45)/(53) and 
cos B=(12)/(13) and angles A and B are in Quadrant I, find the value of 
tan(A+B).
Answer:

If sinA=4553 \sin A=\frac{45}{53} and cosB=1213 \cos B=\frac{12}{13} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:

Full solution

Q. If sinA=4553 \sin A=\frac{45}{53} and cosB=1213 \cos B=\frac{12}{13} and angles A and B are in Quadrant I, find the value of tan(A+B) \tan (A+B) .\newlineAnswer:
  1. Find Trigonometric Functions: Use the Pythagorean identity to find cosA\cos A and sinB\sin B. Since AA is in Quadrant I, cosA\cos A will be positive. Similarly, since BB is in Quadrant I, sinB\sin B will also be positive. For angle AA, we have sinA=4553\sin A = \frac{45}{53}. Using the Pythagorean identity sin2A+cos2A=1\sin^2 A + \cos^2 A = 1, we can find cosA\cos A. sinB\sin B00. For angle BB, we have sinB\sin B22. Using the Pythagorean identity sinB\sin B33, we can find sinB\sin B. sinB\sin B55.
  2. Calculate Tangent of Sum: Use the angle sum identity for tangent to find tan(A+B)\tan(A+B). The angle sum identity for tangent is tan(A+B)=tanA+tanB1tanAtanB\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}. We need to find tanA\tan A and tanB\tan B. tanA=sinAcosA=45/5328/53=4528\tan A = \frac{\sin A}{\cos A} = \frac{45/53}{28/53} = \frac{45}{28}. tanB=sinBcosB=5/1312/13=512\tan B = \frac{\sin B}{\cos B} = \frac{5/13}{12/13} = \frac{5}{12}.
  3. Substitute and Simplify: Substitute the values of tanA\tan A and tanB\tan B into the angle sum identity.tan(A+B)=tanA+tanB1tanAtanB=4528+5121(4528512)\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{\frac{45}{28} + \frac{5}{12}}{1 - \left(\frac{45}{28} \cdot \frac{5}{12}\right)}.
  4. Substitute and Simplify: Substitute the values of tanA\tan A and tanB\tan B into the angle sum identity.tan(A+B)=tanA+tanB1tanAtanB=45/28+5/121(45/285/12)\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{45/28 + 5/12}{1 - (45/28 \cdot 5/12)}.Perform the addition and multiplication in the numerator and denominator.tan(A+B)=(45/28)(12/12)+(5/12)(28/28)1(45/28)(5/12)\tan(A+B) = \frac{(45/28) \cdot (12/12) + (5/12) \cdot (28/28)}{1 - (45/28) \cdot (5/12)}tan(A+B)=(540/336)+(140/336)1(225/336)\tan(A+B) = \frac{(540/336) + (140/336)}{1 - (225/336)}tan(A+B)=680/3361(225/336)\tan(A+B) = \frac{680/336}{1 - (225/336)}tan(A+B)=680/336(336/336)(225/336)\tan(A+B) = \frac{680/336}{(336/336) - (225/336)}tan(A+B)=680/336111/336\tan(A+B) = \frac{680/336}{111/336}
  5. Substitute and Simplify: Substitute the values of tanA\tan A and tanB\tan B into the angle sum identity.tan(A+B)=tanA+tanB1tanAtanB=45/28+5/121(45/285/12)\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{45/28 + 5/12}{1 - (45/28 \cdot 5/12)}.Perform the addition and multiplication in the numerator and denominator.tan(A+B)=(45/28)(12/12)+(5/12)(28/28)1(45/28)(5/12)\tan(A+B) = \frac{(45/28) \cdot (12/12) + (5/12) \cdot (28/28)}{1 - (45/28) \cdot (5/12)}tan(A+B)=(540/336)+(140/336)1(225/336)\tan(A+B) = \frac{(540/336) + (140/336)}{1 - (225/336)}tan(A+B)=680/3361(225/336)\tan(A+B) = \frac{680/336}{1 - (225/336)}tan(A+B)=680/336(336/336)(225/336)\tan(A+B) = \frac{680/336}{(336/336) - (225/336)}tan(A+B)=680/336111/336\tan(A+B) = \frac{680/336}{111/336}Simplify the fraction.tan(A+B)=680/336336/111=680111\tan(A+B) = \frac{680/336} \cdot \frac{336/111} = \frac{680}{111}

More problems from Quadrants