Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following radian measures is equal to 
120^(@) ?
Choose 1 answer:
(A) 
(2pi)/(3) radians
(B) 
pi radians
(C) 
(4pi)/(3) radians
(D) 
(5pi)/(3) radians

Which of the following radian measures is equal to 120 120^{\circ} ?\newlineChoose 11 answer:\newline(A) 2π3 \frac{2 \pi}{3} radians\newline(B) π \pi radians\newline(C) 4π3 \frac{4 \pi}{3} radians\newline(D) 5π3 \frac{5 \pi}{3} radians

Full solution

Q. Which of the following radian measures is equal to 120 120^{\circ} ?\newlineChoose 11 answer:\newline(A) 2π3 \frac{2 \pi}{3} radians\newline(B) π \pi radians\newline(C) 4π3 \frac{4 \pi}{3} radians\newline(D) 5π3 \frac{5 \pi}{3} radians
  1. Identify formula for conversion: Identify the formula to convert degrees to radians. The formula is radians=degrees×(π180)\text{radians} = \text{degrees} \times \left(\frac{\pi}{180^\circ}\right).
  2. Convert 120120 degrees to radians: Convert 120120 degrees into radians using the formula. By substituting 120120 degrees into the formula, we get 120×(π180)=(120180)×π=(23)×π120^\circ \times \left(\frac{\pi}{180^\circ}\right) = \left(\frac{120}{180}\right) \times \pi = \left(\frac{2}{3}\right) \times \pi.
  3. Simplify fraction to find radian measure: Simplify the fraction (23)π(\frac{2}{3}) \cdot \pi to find the radian measure. (23)π=2π3(\frac{2}{3}) \cdot \pi = \frac{2\pi}{3} radians.
  4. Match result with given options: Match the result with the given options. The correct option that matches (2π)/3(2\pi)/3 radians is (A) (2π)/(3)(2\pi)/(3) radians.

More problems from Convert between radians and degrees