Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following radian measures is equal to 
240^(@) ?
Choose 1 answer:
A) 
(4pi)/(3) radians
(B) 
(5pi)/(3) radians
(C) 
(7pi)/(3) radians
(D) 
(11 pi)/(3) radians

Which of the following radian measures is equal to 240 240^{\circ} ?\newlineChoose 11 answer:\newline(A) 4π3 \frac{4 \pi}{3} radians\newlineB 5π3 \frac{5 \pi}{3} radians\newline(C) 7π3 \frac{7 \pi}{3} radians\newline(D) 11π3 \frac{11 \pi}{3} radians

Full solution

Q. Which of the following radian measures is equal to 240 240^{\circ} ?\newlineChoose 11 answer:\newline(A) 4π3 \frac{4 \pi}{3} radians\newlineB 5π3 \frac{5 \pi}{3} radians\newline(C) 7π3 \frac{7 \pi}{3} radians\newline(D) 11π3 \frac{11 \pi}{3} radians
  1. Identify formula for conversion: Identify the formula to convert degrees to radians. The formula is radians=degrees×(π180)\text{radians} = \text{degrees} \times \left(\frac{\pi}{180^\circ}\right).
  2. Convert 240240 degrees to radians: Convert 240240 degrees into radians using the formula. By substituting 240240 degrees into the formula, we get 240×(π180)=(240180)×π=(43)×π240^\circ \times \left(\frac{\pi}{180^\circ}\right) = \left(\frac{240}{180}\right) \times \pi = \left(\frac{4}{3}\right) \times \pi radians.
  3. Simplify fraction (43)(\frac{4}{3}): Simplify the fraction (43)(\frac{4}{3}) to find the exact radian measure. (43)×π(\frac{4}{3}) \times \pi radians simplifies to (4π3)(\frac{4\pi}{3}) radians.
  4. Match radian measure with options: Match the calculated radian measure with the given options. The correct option that matches (4π/3)(4\pi/3) radians is option A.

More problems from Convert between radians and degrees