Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
f(x)=2^(5x)+19, what is the value of 
f(-1), to the nearest tenth (if necessary)?
Answer:

If f(x)=25x+19 f(x)=2^{5 x}+19 , what is the value of f(1) f(-1) , to the nearest tenth (if necessary)?\newlineAnswer:

Full solution

Q. If f(x)=25x+19 f(x)=2^{5 x}+19 , what is the value of f(1) f(-1) , to the nearest tenth (if necessary)?\newlineAnswer:
  1. Substitute xx with 1-1: Substitute xx with 1-1 in the function f(x)=25x+19f(x) = 2^{5x} + 19.\newlinef(1)=25(1)+19f(-1) = 2^{5(-1)} + 19
  2. Calculate exponent part: Calculate the exponent part of the function.\newline25(1)=252^{5(-1)} = 2^{-5}\newlineSince 252^{-5} means 11 over 22 raised to the power of 55, we calculate it as follows:\newline25=1/(25)=1/322^{-5} = 1 / (2^5) = 1 / 32
  3. Add 1919: Add 1919 to the result from Step 22.\newlinef(1)=132+19f(-1) = \frac{1}{32} + 19\newlineTo add a fractions" target="_blank" class="backlink">fraction to a whole number, we can convert the whole number to a fraction with the same denominator.\newline19=19×(3232)=6083219 = 19 \times \left(\frac{32}{32}\right) = \frac{608}{32}\newlineNow we add the two fractions.\newlinef(1)=(132)+(60832)=1+60832=60932f(-1) = \left(\frac{1}{32}\right) + \left(\frac{608}{32}\right) = \frac{1 + 608}{32} = \frac{609}{32}
  4. Convert to decimal: Convert the fraction to a decimal to find the nearest tenth. \newline609/32=19.03125609 / 32 = 19.03125\newlineRounded to the nearest tenth, this is 19.019.0.

More problems from Powers with decimal bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 10 months ago