Q. If cosx=53,x in quadrant I, then find (without finding x )sin(2x)=cos(2x)=tan(2x)=
Apply Double Angle Formulas: Use the double angle formulas for sine and cosine:sin(2x)=2sin(x)cos(x)cos(2x)=cos2(x)−sin2(x)tan(2x)=cos(2x)sin(2x)
Find sin(x): Find sin(x) using the Pythagorean identity, sin2(x)+cos2(x)=1:sin2(x)=1−cos2(x)=1−(53)2=1−259=2516sin(x)=2516=54 (since x is in quadrant I, sin(x) is positive)
Calculate sin(2x) and cos(2x): Calculate sin(2x) and cos(2x) using the values of sin(x) and cos(x):sin(2x)=2×(54)×(53)=2524cos(2x)=(53)2−(54)2=259−2516=−257
Calculate tan(2x): Calculate tan(2x) using sin(2x) and cos(2x):tan(2x)=2524/25−7=−724
More problems from Find derivatives of sine and cosine functions